Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22 DISCRETE STRUCTURES \& THEORY OF LOGIC

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$

a.	Define semi-group and Abelian Group.
b.	Define pseudo graph and multi graph
c.	Simplify the following Boolean function using k-map: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2$, $3,4,5,6,7)$
d.	Draw the Hasse diagram representing the positive divisors of 18.
e.	What is the contra positive, converse and inverse of the conditional statement $=>$ If you try then you will win.
f.	Find the symmetric closure of the relation $\mathrm{R}=\{(3,3),(2,2),(1,3),(2,1)\}$ on $\mathrm{A}=\{1,2,3,4\}$
g.	Find the power set of each of these sets, where a and b are distinct elements. $1 .\{\mathrm{a}, \mathrm{b}\} 2 .\{\{\mathrm{a}\}, \mathrm{b}\}$

SECTION B

2. Attempt any three of the following:
$7 \times 3=21$

a.	The function $f: R->R$ defined as $f(x)=2 x+3$ for all $x \in R$ is both injective and surjective function so find $\mathrm{f}^{-1}(\mathrm{x})$.
b.	Show that the set thall positive rational numbers forms an abelian group under the compositig defined by $\mathrm{a}^{*} \mathrm{~b}=(\mathrm{ab}) / 4$.
c.	Distinguishoetween distributed lattice and complemented lattice with suitable exampl
d.	Find hether the following argument is valid or not. (1)No Engineering student is bad in studies. Abhishek is not bad in studies. Therefore Abhishek is an engineering student. (2)All dogs are carnivorous. Some animals are dogs. Therefore some animals are carnivorous.
e.	Explâin chromatic number of a graph. Examine the chromatic no. for bipartite graph $\left(\mathrm{K}_{4}, 5\right)$ and complete graph $\left(\mathrm{K}_{20}\right)$.

SECTION C

3. Attempt any one part of the following:
$7 \times 1=7$
(a) By using mathematical induction prove that the given equation is true for all positive integers.
$2+4+6+\ldots .+2 n=n(n+1)$
(b) If R is the relation on the set of integers such that $(\mathrm{a}, \mathrm{b}) € \mathrm{R}$ iff $3 \mathrm{a}+7 \mathrm{~b}=7 \mathrm{n}$ for some integer n . Prove that R is an equivalence relation.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

\square
4. Attempt any one part of the following:
(a) Show that the set $\{0,1,2,3,4,5,6\}$ is group under addition Modulo 7 .
(b) If the order of an element a of a group is n and p is prime to n then the order of a^{p} is n .
5. Attempt any one part of the following:

(a)	Explain lattice. Determine whether $(P(S), \subseteq)$ is a lattice where S is a set $\{2,4$, 6\}. Find last element, first element, minimal element \& maximal element.
(b)	Simplify the following Boolean function using three variables maps:
(a) $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u})=\sum(0,1,5,7,9,11)$	
(b) $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u})=\pi(1,2,3,5,7)$	

6. Attempt any one part of the following:

(a)	Construct the truth table for the following statements and find which statement is tautology, contradiction and contingency: (i) $(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{R}^{\prime}$ (ii) $\mathrm{P} \leftrightarrow\left(\mathrm{P}^{\prime} \vee \mathrm{R}^{\prime}\right)$
(b)	Suppose that the fratement $\mathrm{p} \rightarrow \neg \mathrm{q}$ is false. Find all combinations of truth values of r and for which $(\neg q \rightarrow r) \wedge(\neg p \vee s)$ is true.

7. Attempt any one poit of the following:
$7 \times 1=7$

(a)	Explain the following terms. Give one suitable example for each
	1) Euler Path
2) Hamiltonian Path	
3) Null Graph	
4) Circuit	
5) Bipartite Graph	
(b)	Find the recurrence relation for the Fibonacci sequence.

